TABLE OF CONTENTS

INTRODUCTION
- Table of contents 3
- Introduction .. 5
- Front Panel .. 6
- Rear Panel .. 8
- Soldering Instructions 8
- Signal flow diagram 9

BASIC OPERATION
- The M•ONE Display 10
- I/O Setup ... 11
- Clock Mismatch 11
- Utility & MIDI .. 12
- Routings ... 13
- Recall ... 16
- Store .. 17
- Tap .. 17

ALGORITHMS
- **Reverb**
 - Hall ... 18
 - Room .. 19
 - Plate 1 .. 20
 - Plate 2 .. 21
 - Spring .. 22
 - Live ... 23
 - Ambience .. 24

- **Other Algorithms**
 - Delay - One Tap & two Tap 25
 - Chorus - Classic & 4-Voice 26
 - Flange - Classic & 4-Voice 27
 - Pitch - Detune & Pitch Shift 28
 - Parametric Equalizer 29
 - Compressor & Limiter 30
 - Gate/Expander 31
 - De-esser .. 32
 - Tremolo - Hard & Soft 33
 - Phaser - Vintage & Smooth 34

APPENDIX
- Important Safety Instructions 35
- Certificate of Conformity 36
- MIDI Implementation Chart 37
- Technical Specifications 38
- Troubleshooting 39
- Preset List ... 40

TC Electronic, Sindalsvej 34, DK-8240 Risskov - tcdk@tcelectronic.com English version Rev 3 - SW - V 1.06 Prod. No: E60500101
Congratulations on the purchase of your new TC Electronic M•ONE unit. The M•ONE is a Dual Engine Multi-effects Processor, focusing mainly on high quality Reverbs. The M•ONE can be used for a number of purposes due to flexible routing of the two Engines and more than 20 TC algorithms. Do you want two independent Reverbs, controlled from separate Auxiliary sends? Select the Dual Input Routing plus two Reverbs, and you are up and running. Do you want a compressor in front of a delay? Select the Serial Routing, a Compressor and a Delay. You can even tap the Delay time on the TAP key. Or maybe you just want stick with that one Routing, no matter the preset? Simply use the Routing Lock function to avoid routing changes at preset change. It is really as easy as that, go ahead and tweak some keys and knobs. We hope you have as much pleasure using the M•ONE as we had making it.

Though the M•ONE is focusing on high quality Reverb you will discover that the M•ONE also covers a wide variety of other algorithms. Experience and enjoy!

- Hall
- Room
- Plates 1&2
- Spring
- Live
- Ambience
- Delay One Tap
- Delay Two Tap
- Chorus Classic & 4-voice
- Flange: Classic & 4-voice
- Pitch: Detune & Pitch Shift
- Parametric EQ
- Compressor/Limiter
- Gate/Expander
- De-esser
- Tremolo
- Phaser
POWER button
Power on/off.

IN LEVEL knob
Adjusts the input level. At center position a relay will switch the input circuit between consumer and pro level. This will insure optimal input gain range and superb "signal to noise" ratio is achieved.

MIX knob
Adjusts the global mix between dry and wet signal. Fully clockwise is 100% effect.

EFFECT BAL knob
Adjusts the balance between the two Engines.

INPUT Meters
The Peak meter shows the input level of left/right channels. The meter range is: 0, -3, -6, -12, -18, -24, -40.

OVERLOAD LEDs
The OVERLOAD LEDs indicate one of two situations:
• The input level is too hot and therefore overloading.
• There is an internal DSP overflow.
The Overload LED is lit when 1 sample is @ -1dBFS.

ANALOG/DIGITAL LED
ANALOG/DIGITAL indicator states the selected input. Input type is selected in the "I/O Setup" menu.

SAMPLE RATE indicator
The SAMPLE RATE indicator shows the clock source and the incoming master clock. The "Digital In" icon will be blinking if no clock or unacceptable clock is found.

ROUTING indicator
Indication of what routing mode the M·ONE currently is using.

ALGO Indicator
Shows the currently used algorithms in each of the two Engines.

DYNAMIC meters 1+2
These two meters show the gain reduction when an Engine is running Dynamic algorithms. The Dynamic algorithms are: Compressor, Limiter, Gate, Expander and De-esser.

DISPLAY
Displays the preset number and the preset type: Factory or User.

EDITED icon
This icon will be lit as soon as the current recalled preset has been modified.

FACTORY/USER icon
Shows whether you are operating in the Factory or the User bank.

MIDI IN icon
Shows any incoming MIDI activity.
ROUTING key
Press the ROUTING key to set the Engine Routing. The options are: Dual Send/Ret, Parallel, Parallel/Serial, Serial, Stereo, Dual Mono.

I/O SETUP
Basic parameters are set here.
• Input source - Analog/Digital.
• Sample Rate - 44.1/48kHz/DI
• Bypass Mode - See Bypass keys 1 and 2.
• Global Output level.
• Dither 16, 20 or 24(off).

TAP key
Tap this key to enter the global Tap tempo and to enter the Tap menu. Subdivision of the tapped tempo is setup in this menu. The tapped tempo can be used for Delay time, Chorus rate etc.

UTILITY
MIDI, Sys-Ex ID, Routing-lock, Bypass mode, Pedal function and Display View angle.

ALGO/EDIT 1+2
Press this key to enter the Edit display and the Algorithm Change display of the currently selected Engine.

BYPASS keys 1 and 2
The Bypass mode is set up in Utility. There are three different Bypass modes:
1 0% Mix:
The Input signal is passed directly to the Output.
2 FX Input:
Cuts only the Engine Input in order to let the effect "ring out", but will still leave the same amount of dry signal coming through.
3 FX Output:
Cuts only the Engine Output in order to kill the FX instantaneously, but leaves the same amount of dry signal coming through.

RECALL key
Selects the Recall menu. Select a desired preset using the CONTROL wheel and press the ENTER key to enter/load the selected preset.

STORE key
Selects the Store menu. Presets can be stored in the User bank only. Location is selected using the CONTROL wheel. Operation is confirmed using ENTER.

CURSOR UP/DOWN
Use the cursors to move around in the display.

ENTER key
Confirms operations. The ENTER key LED will indicate when this key can be used.

EXIT key
Is used to exit a menu or to disapprove an action.

CONTROL wheel
Is used to change values.
REAR PANEL

Balanced Jack Analog Inputs
Balanced Jack Analog Outputs
Digital S/PDIF Input/Output
MIDI In, Out, Thru
Pedal Input
Power Input
Serial no.

MIDI Cable
DIN CONNECTOR 5POLE - MALE 45 degrees
max. 10m
SHIELDED CABLE (3 or 5 wires + screen)

Jack (unbalanced) - XLR
Sleeve - Pin 1 (Ground)
Tip - Pin 2 (Hot)
Sleeve - Pin 3 (Cold)

Jack (balanced) - XLR
Sleeve - Pin 1 (Ground)
Tip - Pin 2 (Hot)
Ring - Pin 3 (Cold)

Pedal Cable
JACK PLUG Mono - male Ø 6.35mm, 1/4"
max. 100m

Switch must be momentary type

CAUTION
THIS CLASS B DIGITAL DEVICE MEETS ALL REQUIREMENTS OF THE CANADIAN INTERFERENCE-CAUSING EQUIPMENT REGULATIONS AND COMPLIES WITH PART 15 OF THE FCC RULES.
OPERATION SUBJECT TO CONDITIONS STATED IN THE MANUAL.
SIGNAL FLOW

ANALOG INPUTS [balanced]

ANALOG IN LEVEL

A/D

44.1kHz
48kHz

S-Rate

Digital Input [S/PDIF]

DIGITAL IN

INPUT PPM

A/D

Engine 1

Bypass

Fx In

Engine 2

Bypass

Fx Out

MIX

D/A

ANALOG OUTPUTS [balanced]

ANALOG OUT RANGE

OUT LEVEL

Digital Output [S/PDIF]

Dither

Engine 1

Engine 2

Bypass

Fx In

Fx Out

Bypass

Bypass

Bypass

44.1kHz
48kHz

D/A

44.1kHz
48kHz

Dither

Digital Output [S/PDIF]
THE M•ONE DISPLAY

Analog/Digital
Analog/Digital indicator states the chosen Input. This choice is done in the "I/O Setup" menu. The Input choice is global. Icons: Analog, Digital

Sample Rate
The Sample Rate indicator shows the clock source and the incoming master clock. These can be: Digi In, 44.1kHz, 48kHz.

Example
• When locked to an external digital signal, the indicator will display: Digi In and 44.1.
• While using analog Inputs and the internal clock will display: 44.1.

In case of no clock or unacceptable clock, the Digital In icon will be blinking indicating the error situation. The Sample Rate choice is global.

Routing Fig and text
Shows the current Routing. Options are: Dual Send/Return, Parallel/Serial, True Stereo and Dual Mono.

Algo Indicator
Shows the running algorithm in each of the two Engines. Push any of the EDIT keys to scroll through the available effect algorithms. Select between: Rev, Dly, Cho, Fla, Pit, EQ, Dyn, Trm and Pha.

Dynamic Meters
These two meters are used to show the gain reduction when one of the Engines is running a dynamic algorithm. Dynamic algorithms are: Compressor, Limiter, Gate, De-esser and Expander.

Preset Number
The current preset number.

Edited
This icon will be lit as soon as the current preset has been modified.

Factory/User
Shows whether you are operating in the Factory or User bank.

MIDI In
Indicates the presence of incoming MIDI data.

Text Line
This 20 character text line is used to display preset names as well as selected functions.
I/O Setup

Basic operation
- Press the I/O SETUP key to enter the global setup parameters of the M•ONE.
- Use the ARROW keys to select parameters and the CONTROL wheel to change parameter values.

All changes in the I/O Setup menu are instantly effective.

Input Source
Select Analog Input
Select the Source parameter using the ARROW keys. The source display arrow is lit. Dial the CONTROL wheel to select between Analog or Digital. When "Analog" is selected M•ONE automatically defaults to the internal 44.1kHz clock as Sample Rate and analog Input is lit in the display.

Select Digital Input
When "Digital" is selected the M•ONE attempts to lock to the S/PDIF Input. The incoming clock will be displayed by the 44.1 or 48kHz display icons and the Digital In icon will be lit. During the lock-up period the Digital In icon will be blinking indicating none or unacceptable clock, and the Outputs are muted. When "lock" is achieved the matching Clock Rate icon is lit, and the Outputs are un-muted.

Clock
Analog Input
When Input source is analog the following Sample Rates are available:
- Internal 44.1kHz - The M•ONE runs at internal 44.1kHz.
- Internal 48kHz - The M•ONE runs at internal 48kHz.
- Digital - The M•ONE locks to the incoming Digital clock.

Digital Input
When Input Source is digital the M•ONE following Sample Rates are available:
- Internal 44.1kHz - The M•ONE runs at internal 44.1kHz.
- Internal 48kHz - The M•ONE runs at internal 48kHz.
- Digital - The M•ONE locks to the incoming Digital clock.

Please note that when using internal clock with external digital audio, the incoming digital audio must be in sync with the M•ONE internal clock in order to avoid slip-samples.

Out Range
Sets the maximum Gain range of the analog Output stage.
Range: 2dBu, 8dBu, 14dBu and 20dBu.

Out level
Controlling the overall digital/analog Output level.
0 to Off (-100dB) in 1dB increments.

Digital In Gain
Sets the digital Input level. This level only affects the digital level.

Dither
Going from one type of bit resolution to a lower, e.g. from 24 bit to 16 bit, you actually lose 8 bits of information. The process of cutting off bits is called truncation and it introduces digital distortion of low level signals, due to the lack of complete signal information. To compensate for this, dither must be applied. Dither is a small amount of filtered noise that generates randomization at the noise floor, ensuring a less distorted low level signal. Dithering is relevant only on digital Outputs and it is always the receiving device that determines the number of bits you must dither to. A CDR or a DAT recorder should normally be dithered to 16 bit.

Rate Mismatch
This Error message will occur in the display if the M•ONE detects slip-samples. Typically this problem only occurs in very special clock setups e.g. if the M•ONE is running via internal clock, while processing audio from the Digital Input. If the incoming clock and the internal clock do not match the M•ONE will display the above written error message.
UTILITY & MIDI

Utility

Basic operation
• Press the UTILITY key to enter the local setup parameters of the M•ONE.
• Use the ARROW keys to select parameters and the CONTROL wheel to change parameter values.
All changes are instantly effective in the Utility menu.

MIDI Channel
Sets the responding MIDI channel of the M•ONE.
Range: Off/1-16/Omni.

MIDI CC
Determines whether the M•ONE should respond to MIDI Continuous Controllers or not.
Range: On/Off.

MIDI Bulk Dump
Press ENTER to perform a Bulk Dump of all presets to an external MIDI device. The M•ONE is always ready to receive MIDI Bulk Dump information.

MIDI Sys-Ex ID
Determines the Sys-Ex ID number of the unit. All effects parameters; algo changes and routings can be changed through MIDI Sys-Ex via an external MIDI device. In order to define which unit the sent MIDI Sys-Ex information should reach, the appropriate ID number must be set.

Program Bank
Determines which bank an external MIDI device will address in the M•ONE when sending a program change. The options are: Factory, User or External.
When External is selected controller #32 can be used to address either the Factory or the User bank.

Factory bank: Controller #32=0
User bank: Controller #32=1

Routing Lock
Locks the current Routing, meaning that the current selected routing will act as a “global routing” and that “preset routings” will not take effect when presets are recalled.

Tap Unit
Selects whether the Tapped tempo in the Tap menu should be displayed in ms (milliseconds) or BPM (Beats Per Minute).

Bypass Mode
There are three different Bypass modes:

0% Mix
The Input signal is passed directly to the Output.

FX Input
Shuts off the Engine Input in order to let the effect “ring out”, but leaves the same amount of dry signal through the unit.

FX Output
Shuts off the Engine Output in order to kill the FX instantaneously, but leave the same amount of dry signal coming through.

Pedal setup
Sets the function of the back panel Pedal jack. The Pedal Input uses momentary switches only.
Range: Bypass 1, Bypass 2, Bypass 1&2, Tap.

Viewing Angle
Adjusts the LCD display backlight for better viewing comfort.
The Routing Menu sets the Routing of the two Engines. When the Routing menu is entered, the arrow in the Routing display icon is lit. Routings are stored with presets, but it is also possible to keep a locked “global routing” meaning that preset routings do not take effect. This is set in the Utility menu.

Basic operation
- Press the ROUTING key to enter the Routing display.
- Use the CONTROL wheel to select routing. The ENTER key is now blinking.
- Press ENTER to activate the selected routing.

Parallel

The Parallel routing sums left/right inputs, and both Engines are fed with the exact same signal. As illustrated the unprocessed dry signal is mixed with the processed signal into two channels via the Mix parameter.

EFFECT BAL
Controls the balance between the two Engine’s FX Outputs.

MIX
Controls the amount of dry signal passed around the two Engines. Dry signal is passed in stereo.

Example:
You need a Chorus and a Reverb on the same guitar track. Select the Chorus in Engine 1, the Reverb in Engine 2 and the Parallel Routing. Now you have your two effects side by side, not influencing each other.

Dual S/R - Dual Send/Return

This is the routing to use if you wish to use the M-ONE as two independent effects processors. Left Input is sent to Engine 1 and right Input is sent to Engine 2. The four FX Outputs are summed to two channels.

EFFECT BAL
Controls the balance between the two Engine’s FX Outputs.

MIX
Controls the amount of dry signal passed around the two Engines. Dry signal is passed in mono. Set MIX fully clockwise when using the M-ONE in a send/return setup.

Example:
Feed the two M-ONE Engines with signal from e.g. two separate Aux.’s from your mixer. Connect the M-ONE L/R Output to a stereo L/R return on your mixer. You are now using the two Engines in the M-ONE as separate stereo effects with a common 2 channel Output.

![Diagram of M-ONE Dual S/R - Dual Send/Return routing](image-url)
Parallel/Serial

The Parallel-Serial routing is similar to the Dual Input routing except for one thing: The Output of Engine 1 can be fed back to Engine 2’s Input. This enables you to e.g. add reverb to the repeats of a delay. The amount of signal that is fed to Engine 2 is controlled by the Eng 2 Crossfeed parameter. The Eng 2 Crossfeed parameter is found in the Routing menu and is part of the preset.

EFFECT BAL
Controls the balance between the two Engine’s FX Outputs.

MIX
Controls the amount of dry signal passed around the two Engines. Dry signal is passed in mono.

Eng2 Feed
Controls the amount of signal passed from the Output of Eng 1 to the Input of Eng 2. This parameter is only active in the Parallel-Serial routing.

Example:
You have a long Delay running in Engine 1, and a large Hall Reverb on Engine 2. Both effects are used for the lead vocal. The level of the two effects are determined by two independent auxiliary sends from your mixing console. The repeats from the Delay seams kind of dry when compared the reverberated vocal, so now you bleed a bit of the Delay repeats from Engine 1 into the Reverb in Engine 2 by turning up the Eng 2 Feed parameter. Now both the Vocal and the Delay repeats are reverberated.

Serial

In Serial mode the signal always passes Engine 1 before Engine 2. On the front panel the EFFECT BAL knob and the MIX knob works as follows:

MIX
In Serial routing, the MIX knob work as the Mix control of Engine 1.

EFFECT BAL
Controls the level of dry signal passed around Engine 2. Please note that the "Dry" signal that passes Eng 2 is picked up after Engine 1. This makes it possible to emulate two stand alone effects in a serial setup. Dry signal is passed in stereo.

Example:
Select the De-esser in Engine 1, and a bright Reverb in Engine 2. The De-esser will now suppress the “Sss” sounds of a vocal, enabling you to use bright and open Reverbs without getting too much sibilance.
Stereo Linked

In the Stereo Linked Routing the Engines perform the exact same effect with synchronized parameter settings. Left I/O are used for Engine 1, Right I/O are used for Engine 2. When switching to Stereo Linked Routing the Engine 1 settings are forced into Engine 2.

EFFECT BAL.
Controls the balance between the two Engine’s FX Outputs.

MIX
Controls the amount of dry signal passed around the two Engines. Dry signal is passed in stereo.

Example:
Select the Compressor and insert the M•ONE on a sub-group on your mixing console. Now you have a true stereo compressor with identical settings, and you only have to edit one Engine to change the settings of both channels.

TIP
The Stereo Linked routing can be used for a true stereo application.

Dual Mono

In the Dual Mono routing, the two Engines are totally independent, meaning mono in/mono out of each Engine. Left I/O are used for Engine 1, Right I/O are used for Engine 2.

EFFECT BAL.
Controls the balance between the two Engine’s FX Outputs.

MIX
Controls the amount of dry signal passed around the two Engines. Dry signal is passed independently for the two channels.

Example:
You need a Tremolo and an EQ for inserting on two different channels. Connect the first channel to Left In/Out of the M•ONE, and the second channel to right In/Out, select the Tremolo and the EQ, and you are up and running.

TIP
Dual Mono is a great routing for independent Mono use. This enables you to use the two Engines for two totally different purposes.
Recall

Recalling a Preset
Recalling a preset means loading/activating a preset.
• Press RECALL to enter the RECALL menu.
• Use the CONTROL wheel to preview presets.
 Preview mode is indicated by blinking preset number and simultaneously blinking LED in the ENTER key.
• Press ENTER or RECALL to recall/activate the preset.

Press the EXIT key during a preview to return to the current recalled preset.

Preset types
User presets - RAM
User presets that can be edited and stored in any User location. You can store up to 100 user presets in the User bank.

Factory presets - ROM
Factory presets that can be edited and stored in any User location. You cannot store presets into a Factory location. The M•ONE holds 100 factory presets.

TIP
When you are in the Factory bank you can press the ARROW UP key to quickly enter the User bank. Likewise you can quickly enter the Factory preset bank by pressing the ARROW DOWN key.
The TAP function allows you to tap a global tempo into the M•ONE. This tempo can be used for Delay time, Chorus rate etc.

Basic operation:
• Press the TAP key once to enter the Tap menu.
• Use the ARROW keys to select parameters.
• Use the CONTROL wheel to select values. Changes are instantly effective.

Tap
Shows the currently entered Tap tempo. The tempo is shown in either ms (milliseconds) or BPM (Beats Per Minute).

Tap Subdivision
The subdivision determines how the M•ONE should respond to the tapped tempo.
Options are: Ignored, 1, 1/2D, 1/2, 1/2T, 1/4D, 1/4, 1/4T, 1/8D, 1/8, 1/8T, 1/16D, 1/16, 1/16T, 1/32D, 1/32, 1/32T.

Tap Func
Sets what Engine the Tap control is working on. Range: Eng 1, Eng 2 or Eng 1&2.

You must select "Ignored" in "Tap Subdivision" to switch off the Tap function.

MIDI Sync
When MIDI Sync is enabled the M•ONE will lock to any incoming MIDI clock. Eg. when hooked up to a sequencer.

When MIDI Sync is enabled the Tap display will default to Subdivision indication.
The Reverbs
Most of the Reverbs in the M•ONE contains two different parts; the Reflections and the Tail.
 • The Reflections, or Early Reflections, simulate the first reflections that are heard. In real life, this is the part of a Reverb that defines the size and character of the room.
 • The other part of the Reverb is known as the Reverb Tail or the diffused field. These reflections are so complex and disordered that you can no longer determine the actual direction of the original source.

In conjunction the two parts create the natural sound of an environment, however in real life the balance between these two parts of a Reverb may vary quite a bit. Therefore we provided controls that allow you to change the level, color and duration or size of the two. Please try to experiment with the two parts of the Reverbs, and we guarantee that you will hear some astonishing effects.

Hall
Decay
Range: 0.02s - 20sec
The Decay parameter determines the length of the Reverb Tail. The length is defined as the time it takes for the Reverb Tail to decay approximately 60dB.

Predelay
Range: 0 - 100ms
A short delay placed between the Early Reflections and the Tail of the reverb. By using predelay the source material is kept clear and undisturbed by the more diffuse reverb tail.

Size
Range: Small - Medium - Large
This parameter determines the size of the Early Reflection pattern. Try experimenting with the different sizes to hear what suits your source material best.

High Cut
Range: 501.2Hz - 20kHz
Rolls off high frequencies with a slope of 6dB/octave. Use this to remove sibilance in the Reverb.

 Try experimenting with the difference in removing high frequencies using the High Cut and the High Color parameters.

High Color
Range: -50 - +50
This parameter adjusts the Decay time in the upper frequency spectra. By decreasing the upper frequency Decay time you remove sibilance while preserving the openness of the Reverb.

Low Color
Range: -50 - +50
This parameter adjusts the Decay time in the lower frequency spectra. Remove rumble while preserving the warmth of the Reverb Tail by decreasing the lower frequency Decay time.

Reflect Level
Range: 0dB to -100dB
This parameter adjusts the level of the Early Reflection.

 Many older Reverbs did not utilize Early Reflection patterns. Try lowering the Reflect Level in order to achieve this character.

Reverb Level
Range: 0dB to -100dB
This parameter adjusts the Reverb Tail level. Lowering the Reverb Level will give you a more ambient sound, since the Early Reflection patterns will become more obvious.
REVERB - Room

Mod Type
Range: Off - Smooth - Vintage
Sets the Type of Modulation used on the Reverb Tail.

Smooth: The Smooth modulation uses a complicated modulation pattern, that allows the Reverb Tail to be modulated without detuning the original source signal.

Vintage: Many older reverbs used a very simple modulation pattern that tended to detune the original source slightly. The Vintage modulation is an emulation of this old modulation style, giving you the traditional detuning effect in the ringout of the reverb.

Mod Speed
Range: -25 - +25
Sets the speed of the modulation. The speed has been optimized for each Reverb type. The +/-25 range is calculated as the variation from this optimal setting.

Mod Depth
Range: -25 - +25
Sets the depth of the Modulation. The Depth has been optimized for each Reverb type. The +/-25 range is calculated as the variation from this optimal setting.

FX Level
Range: 0 - 100%
The level of the entire effect.

Room

Decay
Range: 0.02s - 2.5s
The Decay parameter determines the length of the Reverb Tail. The length is defined as the time it takes for the Reverb Tail to decay approx 60dB.

Predelay
Range: 0 - 100ms
A short delay placed between the Early Reflections and the Tail of the reverb. By using predelay the source material is kept clear and undisturbed by the more diffuse reverb tail.

TIP: Try to turn down the Reflect Level in order to achieve the traditional "slapback" effect on the Reverb Tail.

Size
Range: Small - Medium - Large
This parameter determines the size of the Early Reflection pattern. Try experimenting with the different sizes to hear what suits your source material best.

High Cut
Range: 501.2Hz - 20kHz
Rolls off high frequencies with a slope of 6dB/octave. Use this to remove sibilance in the Reverb.

TIP: Try experimenting with the difference in removing high frequencies using the High Cut and the High Color parameters.

High Color
Range: -50 - +50
This parameter adjusts the Decay time in the upper frequency spectra. By decreasing the upper frequency Decay time you remove sibilance while preserving the openness of the Reverb.

Low Color
Range: -50 - +50
This parameter adjusts the Decay time in the lower frequency spectra. Remove rumble while preserving the warmth of the Reverb Tail by decreasing the lower frequency Decay time.
REVERB - Room & Plate

Reflect Level
Range: 0dB to -100dB
This parameter adjusts the level of the Early Reflections.

Many older Reverbs did not utilize Early Reflection patterns. Try lowering the Reflect Level in order to achieve this character.

Reverb Level
Range: 0dB to -100dB
This parameter adjusts the Reverb Tail level. Lowering the Reverb Level will give you a more ambient sound, since the Early Reflection patterns will become more obvious.

Mod
Range: Off - On
Modulating the Reverb tail will create a more chaotic Reverb Tail, very similar to a natural room.

Mod Speed
Range: -25 - +25
Sets the speed of the modulation. The speed has been optimized for each Reverb type. The +/-25 range is calculated as the variation from this optimal setting.

Mod Depth
Range: -25 - +25
Sets the depth of the Modulation. The Depth has been optimized for each Reverb type. The +/-25 range is calculated as the variation from this optimal setting.

FX Level
Range: 0 - 100%
The level of the entire effect.

Plate 1

Decay
Range: 0.02s - 20s
The Decay parameter determines the length of the Reverb Tail. The length is defined as the time it takes for the Reverb Tail to decay approx 60dB.

Predelay
Range: 0 - 100ms
A short delay placed between the Early Reflections and the Tail of the reverb. By using predelay the source material is kept clear and undisturbed by the more diffuse reverb tail.

Try to turn down the Reflect Level in order to achieve the traditional "slapback " effect on the Reverb Tail.

Size
Range: Small - Medium - Large
This parameter determines the size of the Early Reflection pattern. Try experimenting with the different sizes to hear what suits your source material best.

High Cut
Range: 501.2Hz - 20kHz
Rolls off high frequencies with a slope of 6dB/octave. Use this to remove sibilance in the Reverb.

Try experimenting with the difference in removing high frequencies using the High Cut and the High Color parameters.

High Color
Range: -50 - +50
This parameter adjusts the Decay time in the upper frequency spectra. By decreasing the upper frequency Decay time you remove sibilance while preserving the openness of the Reverb.
REVERB - Plate

Low Color
Range: -50 - +50
This parameter adjusts the Decay time in the lower frequency spectra. Remove rumble while preserving the warmth of the Reverb Tail by decreasing the lower frequency Decay time.

Reflect Level
Range: 0dB to -100dB
This parameter adjusts the level of the Early Reflections.

Many older Reverbs did not utilize Early Reflection patterns. Try lowering the Reflect Level in order to achieve this character.

Reverb Level
Range: 0dB to -100dB
This parameter adjusts the Reverb Tail level. Lowering the Reverb Level will give you a more ambient sound, since the Early Reflection patterns will become more obvious.

Mod Speed
Range: -25 - +25
Sets the speed of the modulation. The Speed has been optimized for each Reverb type. The +/-25 range is calculated as the variation from this optimal setting.

Mod Depth
Range: -25 - +25
Sets the depth of the Modulation. The Depth has been optimized for each Reverb type. The +/-25 range is calculated as the variation from this optimal setting.

FX Level
Range: 0 - 100%
The level of the entire effect.

Plate 2

Decay
Range: 0.02s - 20s
The Decay parameter determines the length of the Reverb Tail. The length is defined as the time it takes for the Reverb Tail to decay approximately 60dB.

Predelay
Range: 0 - 100ms
A short delay placed between the Early Reflections and the Tail of the reverb. By using predelay the source material is kept clear and undisturbed by the more diffuse reverb tail.

Try to turn down the Reflect Level in order to achieve the traditional "slapback" effect on the Reverb Tail.

Size
Range: Small - Medium - Large
This parameter determines the size of the Early Reflection pattern. Try experimenting with the different sizes to hear what suits your source material best.

High Cut
Range: 501.2Hz - 20kHz
Rolls off high frequencies with a slope of 6dB/octave. Use this to remove sibilance in the Reverb.

Try experimenting with the difference in removing high frequencies using the High Cut and the High Color parameters.

High Color
Range: -50 - +50
This parameter adjusts the Decay time in the upper frequency spectra. By decreasing the upper frequency Decay time you remove sibilance while preserving the openness of the Reverb.

Low Color
Range: -50 - +50
This parameter adjusts the Decay time in the lower frequency spectra. Remove rumble while preserving the warmth of the Reverb Tail by decreasing the lower frequency Decay time.
REVERB - Spring

Spring
A reverb algorithm designed to reproduce the sound of the old spring reverbs, such as the ones used in vintage guitar amps.

Decay
Range: 0.02s - 20s
The Decay parameter determines the length of the Reverb Tail. The length is defined as the time it takes for the Reverb Tail to decay approximately 60dB.

Predelay
Range: 0 - 100ms
A short delay placed between the direct signal and the Tail of the reverb. By using predelay the source material is kept clear and undisturbed by the more diffuse reverb tail.

High Cut
Range: 501.2Hz - 20kHz
Rolls off high frequencies with a slope of 6dB/octave. Use this to remove sibilance in the Reverb.

Low Color
Range: -50 - +50
This parameter adjusts the Decay time in the lower frequency spectra. Remove rumble while preserving the warmth of the Reverb Tail by decreasing the lower frequency Decay time.

FX Level
Range: 0 - 100%
The level of the entire effect.
Live

Decay
Range: 0.02s - 20s
The Decay parameter determines the length of the Reverb Tail. The length is defined as the time it takes for the Reverb Tail to decay approximately 60dB.

Predelay
Range: 0 - 100ms
A short delay placed between the Early Reflections and the Tail of the reverb. By using predelay the source material is kept clear and undisturbed by the more diffuse reverb tail.

Try to turn down the Reflect Level in order to achieve the traditional “slapback” effect on the Reverb Tail.

Size
Range: Small - Medium - Large
This parameter determines the size of the Early Reflection pattern. Try experimenting with the different sizes to hear what suits your source material best.

High Cut
Range: 501.2Hz - 20kHz
Rolls off high frequencies with a slope of 6dB/octave. Use this to remove sibilance in the Reverb.

Try experimenting with the difference in removing high frequencies using the High Cut and the High Color parameters.

High Color
Range: -50 - +50
This parameter adjusts the Decay time in the upper frequency spectra. By decreasing the upper frequency Decay time you remove sibilance while preserving the openness of the Reverb.

Low Color
Range: -50 - +50
This parameter adjusts the Decay time in the lower frequency spectra. Remove rumble while preserving the warmth of the Reverb Tail by decreasing the lower frequency Decay time.

Reflect Level
Range: 0dB to -100dB
This parameter adjusts the level of the Early Reflection.

Many older Reverbs did not utilize Early Reflection patterns. Try lowering the Reflect Level in order to achieve this character.

Reverb Level
Range: 0dB to -100dB
This parameter adjusts the Reverb Tail level. Lowering the Reverb Level will give you a more ambient sound, since the Early Reflection patterns will become more obvious.

Mod Speed
Range: -25 - +25
Sets the speed of the modulation. The speed has been optimized for each Reverb type. The +/-50 range is calculated as the variation from this optimal setting.

Mod Depth
Range: -25 - +25
Sets the depth of the Modulation. The Depth has been optimized for each Reverb type. The +/-50 range is calculated as the variation from this optimal setting.

FX Level
Range: 0 - 100%
The level of the entire effect.
Ambience
As opposed to the Spring reverb, the Ambience algorithm is a very natural sounding reverb.

Decay
Range: 0.02s - 2.5s
The Decay parameter determines the length of the Reverb Tail. The length is defined as the time it takes for the Reverb Tail to decay approximately 60dB.

Predelay
Range: 0 - 100ms
A short delay placed between the Early Reflections and the Tail of the reverb. By using predelay the source material is kept clear and undisturbed by the more diffuse reverb tail.

Try to turn down the Reflect Level in order to achieve the traditional "slapback" effect on the Reverb Tail.

Size
Range: Small - Medium - Large
This parameter determines the size of the Early Reflection pattern. Try experimenting with the different sizes to hear what suits your source material best.

High Cut
Range: 501.2Hz - 20kHz
Rolls off high frequencies with a slope of 6dB/octave. Use this to remove sibilance in the Reverb.

Try experimenting with the difference in removing high frequencies using the High Cut and the High Color parameters.

High Color
Range: -50 - +50
This parameter adjusts the Decay time in the upper frequency spectra. By decreasing the upper frequency Decay time you remove sibilance while preserving the openness of the Reverb.

Low Color
Range: -50 - +50
This parameter adjusts the Decay time in the lower frequency spectra. Remove rumble while preserving the warmth of the Reverb Tail by decreasing the lower frequency Decay time.

Reflect Level
Range: 0dB to -100dB
This parameter adjusts the level of the Early Reflection.

Many older Reverbs did not utilize Early Reflection patterns. Try lowering the Reflect Level in order to achieve this character.

Reverb Level
Range: 0dB to -100dB
This parameter adjusts the Reverb Tail level. Lowering the Reverb Level will give you a more ambient sound, since the Early Reflection patterns will become more obvious.

Mod
Range: Off - On
Switches the Modulation function On/Off. Modulating the Reverb tail will create a more chaotic Reverb Tail, very similar to a natural room.

Mod Speed
Range: -25 - +25
Sets the speed of the modulation. The Speed has been optimized for each Reverb type. The +/-25 range is calculated as the variation from this optimal setting.

Mod Depth
Range: -25 - +25
Sets the depth of the Modulation. The Depth has been optimized for each Reverb type. The +/-25 range is calculated as the variation from this optimal setting.

FX Level
Range: 0 - 100%
The level of the entire effect.
DELAY - One Tap & Two Tap

One Tap

The One Tap Delay mode operates with one delay line only.

- **Delay Time**
 Range: 0 - 4000ms
 The length of the delay time.

- **Feedback**
 Range: -100 to +100
 Controls the amount of signal that is routed back to the input of the algorithm. The higher Feedback value the more repeats you will get.

- **Pan**
 Range: 50L - 50R
 Controls the panning of the selected voice.

- **High Cut**
 Range: 500Hz - 20kHz
 High Cut filter that allows you to reduce the high frequencies of the Delay Taps. This gives you softer and more analog sounding Delay Taps which in some cases will seem less disturbing in the overall sound than a delay with no High Cut.

- **Low Cut**
 Range: 19.9Hz - 2kHz
 Low Cut filter reducing the low end frequencies of the Delay Taps. When using delay on signals with low frequencies a full-range delay might introduce a less tight feeling in the low frequencies. Use the Low Cut filter to avoid this.

- **FX Level**
 Range: 0 - 100%
 The overall level of the Delay.

Two Tap

The Two Tap Delay mode operates with two Taps, each with its own set of parameters.

- **Delay Time 1+2**
 Range: 0 - 4000ms
 The delay time of the Delay tap.

- **Offset**
 Range: 0-200ms
 Offsets the Delay in the right Channel.

- **Feedback 1+ 2**
 Range: -100 to +100
 Controls the amount of signal that is routed back to the input of the algorithm. The higher Feedback value the more repeats you will get.

- **Level 1+2**
 Range: -100 - 0dB
 The level of the selected Tap.

- **Pan 1+2**
 Range: 50L - 50R
 Controls the panning of the selected voice.

- **High Cut**
 Range: 500Hz - 20kHz
 High Cut filter that allows you to reduce the high frequencies of the Delay Taps. This gives you softer and more analog sounding Delay Taps which in some cases will seem less disturbing in the overall sound than a delay with no High Cut.

- **Low Cut**
 Range: 19.9Hz - 2kHz
 Low Cut filter reducing the low end frequencies of the Delay Taps. When using delay on signals with low frequencies a full-range delay might introduce a less tight feeling in the low frequencies. Use the Low Cut filter to avoid this.

- **FX Level**
 Range: 0 - 100%
 The overall level of the Delay.
CHORUS - Classic & 4-Voice

Classic
A Chorus/Flanger is basically a delay being pitch-modulated by an LFO (Low Frequency Oscillator). The M•ONE Classic Chorus is based on 2 voices and produces a smooth natural sounding chorus.

Speed
Range: 0.05 - 19.2Hz
The Speed of the Chorus. Also known as "Rate".

Depth
Range: 0 - 100%
The Depth of the Chorus. Also known as "Intensity".

Delay
Range: 0 - 100ms
A Chorus is basically a delay being pitch-modulated by an LFO (Low Frequency Oscillator). The typical Delay time used in a Chorus is around 10ms.

FX Lev
Range: 0 -100%
The level of the Chorus effect.

4-Voice
The 4-voice Chorus is based on two Classic Chorus blocks connected in serial, phase-reversed and with a fixed Delay time. This gives you twice the amount on "voices" and produces a much thicker sounding Chorus effect compared to the Classic algorithm.

Speed
Range: 0.05 - 19.2Hz
The speed of the Chorus. Also known as "Rate".

Depth
Range: 0 - 100%
The depth of the Chorus. also known as "Intensity".

FX Lev
Range: 0 -100%
The level of the Chorus effect.
Classic
A Chorus/Flanger is basically a delay being pitch-modulated by an LFO (Low Frequency Oscillator). The M•ONE Classic Flanger is based on 2 voices.

Speed
Range: 0.05 - 19.2Hz
The speed of the Flanger. Also known as "Rate".

Depth
Range: 0 - 100%
The depth of the Flanger. Also known as "Intensity".

Feedback
Range: -100 to +100
The amount of processed signal that is fed back to the input of the algorithm. When the feedback value is negative, the Feedback signal is phase reversed.

Delay
Range: 0 - 100ms
The typical delay used in a Flanger is around 5ms.

FX Lev
Range: 0 - 100%
The level of the Flanger effect.

4-Voice
The 4-voice Flanger is based on two Classic Flanger blocks connected in serial, phase-reversed and with a fixed delay time. This gives you twice the amount on "voices" and produces a much thicker sounding Flange effect compared to the Classic algorithm.

Speed
Range: 0.05 - 19.2Hz
The speed of the Flanger. Also known as "Rate".

Depth
Range: 0 - 100%
The depth of the Flanger. also known as "Intensity".

Feedback
Range: -100 - 100
The amount of processed signal that is fed back to the input of the algorithm. When the feedback value is negative, the Feedback signal is phase reversed.

FX Lev
Range: 0 -100%
The level of the Flanger effect.
Pitch Detune
Pitch Detune is similar to the Pitch algorithm meaning that a fixed voice is added to the signal. However the range in a Detune algorithm is considerably lower and is often used to create a wide sound as opposed to a second voice.
By using approx. 5-10 cent of Detune amount you will get a chorus sounding effect without the modulating/swirling motion that is so characteristic for the chorus, but in some cases disturbs the clarity of the sound.

Pitch 1+2
Range: -50 - 50 cent
The pitch value of the selected voice.

Level 1+2
Range: -100 - 0dB
The level of the selected voice.

Pan 1+2
Range: 50L to 50R
Controls the panning of the selected voice.

Delay 1+2
Range: 0 - 100ms
The Delay time of the selected voice.

FX Level
Range: 0 - 100%
The level of the entire effect.

Pitch Shift
The M•ONE Pitch algorithm allows you to add 2 separate fixed voices to the source signal. In the following parameter description these are referred to as 1 and 2.

Pitch 1
Range: -1200 - 1200 cent
Determines the pitch value of the first fixed voice.
As 100 cent is one semitone you are able to add a second voice withing the range of +/- one whole octave.

Level 1
Range: -100 - 0dB
The level of the added voice.

Pan 1
Range: 50L to 50R
Controls the panning of the first voice.

Delay 1
Range: 0 - 100ms
The Delay time of the first added voice.

Pitch 2
Range: -1200 - 1200 cent
Determines the pitch value of the second fixed voice.

Level 2
Range: -100 - 0dB
The level of the second added voice.

Pan 2
Range: 50L to 50R
Controls the panning of the second voice.

Delay 2
Range: 0 - 100ms
The Delay time of the second added voice.

FX Lev
Range: 0 - 100%
The Level of the entire effect.
The M•ONE Equalizer is a three band parametric type with an additional high and low shelving band.

Low Shelving Band:
Low Freq
Range: 19.95Hz to 5.01kHz
Sets the target-frequency for the Low shelving band.

Low Slope
Range: 3dB/oct - 12dB/oct
The Low Slope parameter sets the steepness of the Low Shelving Band curve.

Low Gain
Range: -12dB - 12dB
The cut or boost of the Low shelving Band.

Parametric Filters:
Freq 1
Range: 19.95Hz to 20kHz
The target frequency for the first of the three EQ bands.

BndWdth 1 - Bandwidth 1
Range: 0.1oct - 4oct
The Bandwidth of the first EQ band.

Gain 1
Range: -12dB - 12dB
The cut or boost of this band.

Freq 2
Range: 19.95Hz to 20kHz
The target frequency for the second of the three EQ bands.

BndWdth 2 - Bandwidth 2
Range: 0.1oct - 4oct
The Bandwidth of the second EQ band.

Gain 2
Range: -12dB - 12dB
The cut or boost of this band.

Freq 3
Range: 19.95Hz to 20kHz
The target frequency for the third of the three EQ bands.

BndWdth 3 - Bandwidth 3
Range: 0.1oct - 4oct
The Bandwidth of the third EQ band.

Gain 3
Range: -12dB - 12dB
The cut or boost of this band.

High Shelving Band:
High Freq
Range: 501.2Hz - 20kHz
Sets the target frequency for the High Shelving Band.

High Slope
Range: 3dB/oct - 12dB/oct
The High Slope parameter sets the steepness of the High Shelving Band curve.

High Gain
Range: -12dB - 12dB
The cut or boost of the High Shelving Band.

FX Level
Range: 0 - 100%
The overall Output level of the Equalizer.
Compressor

A compressor is meant to reduce the dynamic content of the Input signal and thereby keep the signal at a more constant level.

Threshold

Range: -60 - 0dB

When the Input signal exceeds the Threshold the Compressor will be activated. So, the lower the Threshold the more compression you will get.

Ratio

Range: Off - inf: 1

The Ratio of the gain reduction. On the illustration this is the angle of the line above the Threshold point.

Example. If the Ratio is set to 4:1 it means that for every 4dB the Input level rises above the set Threshold only one dB is Output.

Knee Mode

Range: Soft or Hard

The Knee mode sets the bending point of the Compressor. When Soft knee mode is selected, the Compressor will gradually reach the Ratio, while Hard knee mode will cause the Compressor to go directly from no compression to the specified Ratio.

Release

Range: 10 - 100dB/sec.

Determines the time the Compressor uses to reach a gain reduction of 1:1 (no reduction) once the Input signal has dropped below the Threshold.

Gain

Range: -100 - +30dB

Use the Gain parameter to compensate for unwanted gain reduction caused by heavy compression.

FX Level

Range: 0 - 100%

The Output level of the Compressor

Limiter

A Limiter can be conceived as a compressor with a high Ratio setting. It is primarily used to prevent fullscale overloads. A fullscale overload means hitting 0dBFS, which is the absolute max in the digital domain, and it causes a clipped and distorted signal.

Threshold

Range: -60dB - 0dB

When the Input signal exceeds the Threshold the Limiter will be activated. So, the lower the Threshold the more limiting you will get.

Ratio

Range: Off - inf: 1

The Ratio of the gain reduction. On the illustration this is the angle of the line above the Threshold point.

Example. If the Ratio is set to 4:1 it means that for every 4dB the Input level rises above the set Threshold only 1dB is output.

Attack

Range: 0.3ms - 100ms

The time it takes for the Limiter to reach the gain reduction specified by the Ratio parameter when the signal is above the set Threshold.

Release

Range: 20ms - 7.0 sec

Release is the time that the Limiter uses to release the gain reduction when the signal exceeds the Threshold.

Gain

Range: -100dB - 30dB

Use the Gain parameter to compensate for unwanted gain reduction caused by heavy limiting.

FX Level

Range: 0 - 100%

The Output level of the Limiter.
Gate
A Gate is also known as a "downward expander". Meaning that when the signal drops below a set Threshold the gate will "close" and thereby mute the signal. This is especially useful when trying to remove unwanted background noise from source material that is only periodically present. This can be anything from vocal tracks to noisy guitar-amps. You can even use it on drums to add a more percussive feeling to the track.

Threshold
Range: -60 - 0dB
When the Input signal falls below the Threshold, the Gate starts working. This means that the higher Threshold the more gating you will get.

Ratio
Range: Off - Inf:1
This is the Ratio of the gain reduction. If the Ratio is set to 4:1 it means that for every 1dB the Input signal decreases, the Output will decrease by 4dB. When the Ratio is set to Infinite:1, it means that when the Input signal falls below the Threshold, the Output is turned all the way down.

Attack
Range: 0.5 - 100ms
The Attack time is the fallback time that the Gate uses to reach the gain reduction specified by the Ratio parameter. Example: If the Input signal suddenly drops 4dB below Threshold in no time, with the Ratio set to 4:1 and the Attack set to 20ms, the M•ONE will use 20ms to reach a total gain reduction of 16dB.

Release:
Range: 20ms - 7 sec.
Release is the time that the Gate uses to release the gain reduction when the signal exceeds the Threshold.

FX Lev
Range: 0 - 100%
The Output level of the Gate.
De-esser
A De-esser is used to remove sibilant sounds from various instruments - especially voices. To remove only the unwanted (most significant) "esses" a De-esser must work dynamically. It could therefore be compared to Compressor working on a specific frequency area only. A dynamic filter ensures that the De-esser only reduces the high frequencies when they are too loud.

Threshold
Range: -60dB - 0dB
When the Input level for the specified frequency area exceeds this level the De-esser will be activated.

Ratio
Range: Off - inf:1
The Ratio of the gain reduction in the specified frequency area.

Frequency
Range: 1kHz - 20kHz
Sets the center frequency for the area in which the De-esser should work.

Attack
Range: 0.5 - 50ms
The Attack time is the response time that the De-esser uses to reach the gain reduction specified by the Ratio parameter.
Example: If the Input signal suddenly increases to 4dB above Threshold with the Ratio set to 4:1 and the Attack set to 20ms, the De-esser will use 20ms to reach the gain reduction of 3dB.

Release:
Range: 20ms - 7 sec.
Release is the fallback time of the De-esser, after the signal drops below the Threshold.

FX Lev
Range: -100 - 0dB
The Output level of the De-esser.
Tremolo
A tremolo is basically an identical level change in left and right channels. This effect is typically heard on guitar tracks or tracks where old Würlitzer E-Pianos are used.

Hard
The Hard Tremolo mode produces the most aggressive type of tremolo.

Speed
Range: 0.05 - 19.2Hz
The Speed of the Tremolo.

Depth
Range: 0 - 100%
The Depth of the Tremolo.

FX Lev
Range: 0 - 100%
The level of the Tremolo effect.

Soft
The Soft Tremolo mode is softer sounding than the Hard mode as the signal is only at its peaks for a short while.

Speed
Range: 0.05 - 19.2Hz
The Speed of the Tremolo.

Depth
Range: 0 - 100%
The Depth of the Tremolo.

FX Lev
Range: 0 - 100%
The level of the Tremolo effect.
PHASER - Vintage & Smooth

Vintage
The Vintage Phaser utilizes four All-pass filters. These filters create a comb looking characteristic. When the filtered sound is mixed with the direct sound the “phasing sound” occurs.

Speed
Range: 0.05 - 19.2Hz
The Speed of the Phaser.

Depth
Range: 0 - 100%
The Depth of the Phaser.

Range
Range: Low or Mid
The Range parameter determines the frequency area in which the Phaser is operating.

Feedback
Range: -100 - 100%
The amount of processed signal that is fed back to the Input of the effect block. When the Feedback value is negative, the Feedback signal is phase reversed.

TIP Try experimenting with the reversed phase Feedback.

FX Lev
Range: 0 - 100%
The level of the Phaser effect.

Smooth
The Smooth Phaser utilizes twelve All-pass filters. These filters create a comb looking characteristic. When the filtered sound is mixed with the direct sound, the “phasing sound” occurs. Due to the higher number of filters this version of the Phaser sounds smoother than Vintage.

Speed
Range: 0.05 - 19.2Hz
The Speed of the Phaser.

Depth
Range: 0 - 100%
The Depth of the Phaser.

Range
Range: Low or High
The Range parameter determines the frequency area in which the Phaser is operating.

Feedback
Range: -100 - 100%
The amount of processed signal that is fed back to the Input of the effect block.

TIP Try experimenting with the reversed phase Feedback.

FX Lev
Range: 0 - 100%
The level of the Phaser effect.
IMPORTANT SAFETY INSTRUCTIONS

Please read, keep, and follow these instructions before connecting this unit. Heed all warnings and instructions. Retain this notice and the owner’s manual for future reference.

The lightning flash with an arrowhead symbol within an equilateral triangle, is intended to alert the user to the presence of uninsulated “dangerous voltage” within the product’s enclosure that may be of sufficient magnitude to constitute a risk of electric shock to persons.

The exclamation point within an equilateral triangle is intended to alert the user to the presence of important operating and maintenance (servicing) instructions in the literature accompanying the product.

Warning!

• To reduce the risk of fire or electric shock, do not expose this unit to rain or moisture.
• Do not open the unit - risk of electric shock inside.
• This apparatus must be earthed.
• Use a three wire grounding type line chord like the one supplied with the product.
• Be advised that different operating voltages require the use of different types of line cord and attachment plugs. If in doubt please contact your TC distributor.
• Check the voltage in your area and use the correct type. See table below:

<table>
<thead>
<tr>
<th>Voltage</th>
<th>Line plug according to standard.</th>
</tr>
</thead>
<tbody>
<tr>
<td>110-125V</td>
<td>UL817 and CSA C22.2 no 42.</td>
</tr>
</tbody>
</table>

• Mount in a well ventilated rack with a little space above and below.
• This equipment should be installed near the socket outlet and disconnection of the device should be easily accessible.
• Do not install near heat source, such as radiators, heat registers, stoves or other apparatus.
 (including amplifiers) that produce heat.
• Do not rely solely on the front screws when mounted in touring rack. Support the back as well.
• Clean only with a damp cloth.
• Do not defeat the safety purpose of a polarized or grounding type plug. A polarized plug has two blades with one wider than the other. A grounding type plug has two blades/prongs and a third grounding prong. The wide blade or the third prong are provided for your safety. When the provided plug does not fit into your outlet, consult an electrician for replacement of the obsolete outlet.
• Protect the power cord from being walked on or pinched particularly at plugs convenience receptacles, and the point where they exit from the apparatus.
• Only use attachments/accessories specified by the manufacturer.
• Unplug this apparatus during lightning storms or when unused for long periods of time.
IMPORTANT SAFETY INSTRUCTIONS

Service
There are no user-serviceable parts inside. All service must be performed by qualified personnel. Servicing is required when:
- the unit has been damaged in any way, such as when the power-supply cord or plug is damaged.
- the unit has been exposed to rain or moisture, or liquid has been spilled into the unit.
- objects have fallen into the unit.
- the unit does not work properly.
- the unit has been dropped.

This equipment has been tested and found to comply with the limits for a Class B Digital device, pursuant to part 15 of the FCC rules. These limits are designed to provide reasonable protection against harmful interference in a residential installations. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

The user may find the following booklet, prepared by the Federal Communications Commission, helpful: "How to identify and Resolve Radio/TV interference Problems." This booklet is available from the US. Government Printing Office, Washington, DC 20402, Stock No. 004-000-0034-4.

Caution:
You are cautioned that any change or modifications not expressly approved in this manual could void your authority to operate this equipment.

For the customers in Canada:
This Class B Digital apparatus meets all requirements of the Canadian Interference-Causing Equipment Regulations. Cet appareil numérique de la classe B respecte toutes les exigences du Réglement sur le matériel brouilleur du Canada.

Certificate Of Conformity
TC Electronic A/S, Sindalsvej 34, 8240 Risskov, Denmark, hereby declares on own responsibility that following product:

M-ONE - Dual Effects Processor
- that is covered by this certificate and marked with CE-label conforms with following standards:

<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN 60065</td>
<td>Safety requirements for mains operated electronic and related apparatus for household and similar general use</td>
</tr>
<tr>
<td>(IEC 60065)</td>
<td></td>
</tr>
</tbody>
</table>

With reference to regulations in following directives: 73/23/EEC, 89/336/EEC

Issued in Risskov, November 1999
Anders Fauerskov
Chief Executive Officer
APPENDIX - MIDI Implementation Chart

DUAL EFFECTS PROCESSOR M•ONE - NOVEMBER - 1999

<table>
<thead>
<tr>
<th>Function</th>
<th>Transmitted</th>
<th>Recognized</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Channel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Default</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Changed</td>
<td>1-16</td>
<td>1-16</td>
<td></td>
</tr>
<tr>
<td>Mode</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Default</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Messages</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Altered</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Note Number</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>True Voice</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Velocity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note ON</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Note OFF</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>After Touch</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Key's</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Ch's</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Pitch Bend</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control Change</td>
<td>X</td>
<td>X</td>
<td>from 16 and up</td>
</tr>
</tbody>
</table>

Control Change

<table>
<thead>
<tr>
<th>Function</th>
<th>Transmitted</th>
<th>Recognized</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prog Change</td>
<td>O</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>System Excl.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common</td>
<td>O</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>Song Pos</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Song Sel</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Tune</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Clock</td>
<td>X</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>Commands</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>System real time</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local ON/OFF</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>All Notes OFF</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Active Sense</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Reset</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

O:YES

- **Mode 1:** OMNI ON, POLY
- **Mode 2:** OMNI ON, MONO
- **Mode 3:** OMNI OFF, POLY
- **Mode 4:** OMNI OFF, MONO

X:NO

- **Eng 1:** 16-31
- **Eng 2:** 48-63
- **System:** 70-78
- All Controllers are single byte type, scaled to parameter range.
Technical Specifications

Digital Inputs and Outputs

Connectors:	RCA Phono (S/PDIF)
Formats:	S/PDIF (24 bit), EIAJ CP-340, IEC 958
Processing Delay:	0.1 ms @ 48 kHz
Frequency Response DIO:	DC to 23.9 kHz ± 0.01 dB @ 48 kHz

Output Dither: HPF/TPDF dither 24/20/16/8 bit

Sample Rates: 44.1 kHz, 48 kHz

Analog Inputs

Connectors:	1/4" phone jack, balanced
Impedance, Bal / Unbal:	21 kOhm / 13 kOhm
Max. Input Level:	+24 dBu
Min. Input Level for 0 dBFS:	0 dBu
Sensitivity:	-12 dB headroom: -12 dBu to +12 dBu
A to D Conversion:	24 bit, 128 x oversampling bitstream
Dynamic Range:	100 dB typ, 20 Hz - 20 kHz
THD:	typ < 0.0025 % @ 1 kHz
Frequency Response:	±0/-0.1 dB @ 48 kHz, 20 Hz to 20 kHz
Crosstalk:	<95 dB, 20 Hz to 20 kHz

Analog Outputs

Connectors:	1/4" phone jack, balanced
Impedance Balanced / Unbalanced:	40 Ohm
Max. Output Level:	+20 dBu (balanced)
Output Ranges:	Balanced: 20/14/8/2 dBu Unbalanced: 14/8/2 dBu
D to A Conversion:	24 bit, 128 x oversampling bitstream
Dynamic Range:	104 dB typ, 20 Hz to 20 kHz
THD:	typ <0.02 db (0.002 %) @ 1 kHz, +20 dBu Output
Frequency Response:	±0/-0.5 dB @ 48 kHz, 20 Hz to 20 kHz
Crosstalk:	<100 dB, 20 Hz to 20 kHz

EMC

- **Complies with:** EN 55103-1 and EN 55103-2
- **Safety Certified to:** IEC 65, EN 60065, UL6500 and CSA E65
- **Environment**
 - Operating Temperature: 32° F to 122° F (0° C to 50° C)
 - Storage Temperature: -22° F to 167° F (-30° C to 70° C)
 - Humidity: Max. 90 % non-condensing
- **Control Interface**
 - MIDI: In/Out/Thru: 5 Pin DIN
 - Pedal: 1/4" phone jack
- **General**
 - Finish: Anodized aluminum front
 - Weight: 4.1 lb. (1.85 kg)
- **Display**
 - Dimensions: 19” x 1.75” x 8.2” (483 x 44 x 195 mm)
 - Power Consumption: 100 to 240 VAC, 50 to 60 Hz (auto-select)
 - Warranty Parts and labor: 1 year

Technical Specifications are subject to change without notice !
Problems sending and receiving MIDI information
You will need to reset the System Parameters! This is done via a System Parameter reset easily performed if you follow the procedure below.

The "System Parameter reset", restores the factory defaults in the I/O and Utility menu's.
The "System Parameter reset" does NOT erase any presets.

- Press and hold the ENTER key during power up.
- Dial the CONTROL wheel until the display reads "Reset Sys Param".
- Press the ENTER key to confirm.
- After 2 seconds, the display reads "Clear/Reset done"
- Power Off - On.
The display reads "Kernel cleared" during the first power up.

The M•ONE System parameters are now reset and the MIDI port is fully functional.
<table>
<thead>
<tr>
<th></th>
<th>PRESET LIST</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M-One halls</td>
</tr>
<tr>
<td>2</td>
<td>Vintage Hall & Room</td>
</tr>
<tr>
<td>3</td>
<td>Natural Hall + Ambient</td>
</tr>
<tr>
<td>4</td>
<td>vocal/Choir halls</td>
</tr>
<tr>
<td>5</td>
<td>Vocal ambient & Hall</td>
</tr>
<tr>
<td>6</td>
<td>Vocal Delay & Spring</td>
</tr>
<tr>
<td>7</td>
<td>Vocal Hall/Ahort SN</td>
</tr>
<tr>
<td>8</td>
<td>VOC Large/Med plate</td>
</tr>
<tr>
<td>9</td>
<td>VOC Amb & Liveverb</td>
</tr>
<tr>
<td>10</td>
<td>Large VOC Hall/Room</td>
</tr>
<tr>
<td>11</td>
<td>Vocal Amb + small Room</td>
</tr>
<tr>
<td>12</td>
<td>Drum & Perc Room</td>
</tr>
<tr>
<td>13</td>
<td>Share/Tom. Live/Plate</td>
</tr>
<tr>
<td>14</td>
<td>Big Share/ Real Room</td>
</tr>
<tr>
<td>15</td>
<td>Toms & a Big Share</td>
</tr>
<tr>
<td>16</td>
<td>Toms & a Short snare</td>
</tr>
<tr>
<td>17</td>
<td>Drum Amb + Short Snare</td>
</tr>
<tr>
<td>18</td>
<td>Perc Plate + S Room</td>
</tr>
<tr>
<td>19</td>
<td>Short Plate + L Room</td>
</tr>
<tr>
<td>20</td>
<td>Ambience & Liveverb</td>
</tr>
<tr>
<td>21</td>
<td>Tap Delay/Small Hall</td>
</tr>
<tr>
<td>22</td>
<td>Small/Large Halls</td>
</tr>
<tr>
<td>23</td>
<td>Gold Plate/Warm Hall</td>
</tr>
<tr>
<td>24</td>
<td>Plate & Spring</td>
</tr>
<tr>
<td>25</td>
<td>Bright Hall & Room</td>
</tr>
<tr>
<td>26</td>
<td>Wide/ Narrow Room</td>
</tr>
<tr>
<td>27</td>
<td>Medium/Small Room</td>
</tr>
<tr>
<td>28</td>
<td>Large/ Medium Room</td>
</tr>
<tr>
<td>29</td>
<td>Large/Small Chamber</td>
</tr>
<tr>
<td>30</td>
<td>Slap Dly + Med Room</td>
</tr>
<tr>
<td>31</td>
<td>Detune and Med Room</td>
</tr>
<tr>
<td>32</td>
<td>Generic Hall/Spring</td>
</tr>
<tr>
<td>33</td>
<td>Generic2 Amb/Live</td>
</tr>
<tr>
<td>34</td>
<td>Live Hall + Slapbak</td>
</tr>
<tr>
<td>35</td>
<td>Saxophone Room</td>
</tr>
<tr>
<td>36</td>
<td>Horns Hit Me</td>
</tr>
<tr>
<td>37</td>
<td>Horns Med/Large Room</td>
</tr>
<tr>
<td>38</td>
<td>Synth Hall + Ambience</td>
</tr>
<tr>
<td>39</td>
<td>Repeats & Slapback</td>
</tr>
<tr>
<td>40</td>
<td>The Pack 15N 2VOX</td>
</tr>
<tr>
<td>41</td>
<td>Delay bleed-Hall</td>
</tr>
<tr>
<td>42</td>
<td>Detune bleed- Ambient</td>
</tr>
<tr>
<td>43</td>
<td>M-one Magic</td>
</tr>
<tr>
<td>44</td>
<td>Tape Delay - Spring</td>
</tr>
<tr>
<td>45</td>
<td>Phaser - Plate</td>
</tr>
<tr>
<td>46</td>
<td>Delay bleed-Room</td>
</tr>
<tr>
<td>47</td>
<td>Hall bleed - Chorus</td>
</tr>
<tr>
<td>48</td>
<td>Hall bleed - Hall</td>
</tr>
<tr>
<td>49</td>
<td>Room bleed - Hall</td>
</tr>
<tr>
<td>50</td>
<td>Small Hall - Hall</td>
</tr>
<tr>
<td>51</td>
<td>De-Essed Hall</td>
</tr>
<tr>
<td>52</td>
<td>De-Essed Plate</td>
</tr>
<tr>
<td>53</td>
<td>Chorused Hall</td>
</tr>
<tr>
<td>54</td>
<td>Compresed Live verb</td>
</tr>
<tr>
<td>55</td>
<td>Compresed Room verb</td>
</tr>
<tr>
<td>56</td>
<td>Wet Chorus-Phaser</td>
</tr>
<tr>
<td>57</td>
<td>Party Next Door</td>
</tr>
<tr>
<td>58</td>
<td>Sund Check</td>
</tr>
<tr>
<td>59</td>
<td>Aalog Style Delay</td>
</tr>
<tr>
<td>60</td>
<td>Detuned Tape Delay</td>
</tr>
<tr>
<td>61</td>
<td>Filtered Octaver</td>
</tr>
<tr>
<td>62</td>
<td>70` s Style</td>
</tr>
<tr>
<td>63</td>
<td>Room- Large Hall</td>
</tr>
<tr>
<td>64</td>
<td>Delay Phased</td>
</tr>
<tr>
<td>65</td>
<td>Chorused Ambience</td>
</tr>
<tr>
<td>66</td>
<td>Predelayed Hall</td>
</tr>
<tr>
<td>67</td>
<td>“Chorused Warm Hall</td>
</tr>
<tr>
<td>68</td>
<td>Compressed Share Verb</td>
</tr>
<tr>
<td>69</td>
<td>Chorused Spring Verb</td>
</tr>
<tr>
<td>70</td>
<td>Gated Live Reverb</td>
</tr>
<tr>
<td>71</td>
<td>Delays and Hall</td>
</tr>
<tr>
<td>72</td>
<td>Five seconds Later</td>
</tr>
<tr>
<td>73</td>
<td>Wurlitzer Verb + Delay</td>
</tr>
<tr>
<td>74</td>
<td>Spread out Verb</td>
</tr>
<tr>
<td>75</td>
<td>Acoustic GTR</td>
</tr>
<tr>
<td>76</td>
<td>BG’s Spread</td>
</tr>
<tr>
<td>77</td>
<td>GTR Spring & Delay</td>
</tr>
<tr>
<td>78</td>
<td>GTR Spring & Chorus</td>
</tr>
<tr>
<td>79</td>
<td>GTR Spread</td>
</tr>
<tr>
<td>80</td>
<td>Rhodes Verb & Chorus</td>
</tr>
<tr>
<td>81</td>
<td>Dual Compressor</td>
</tr>
<tr>
<td>82</td>
<td>Dual Gate/ Expander</td>
</tr>
<tr>
<td>83</td>
<td>Phaser + Termolo</td>
</tr>
<tr>
<td>84</td>
<td>Dual EQ</td>
</tr>
<tr>
<td>85</td>
<td>Dual Delays</td>
</tr>
<tr>
<td>86</td>
<td>Delay and Chorus</td>
</tr>
<tr>
<td>87</td>
<td>Flanger & Chorus</td>
</tr>
<tr>
<td>88</td>
<td>Tremolo & Compressor</td>
</tr>
<tr>
<td>89</td>
<td>Slap Dly + Spring Verb</td>
</tr>
<tr>
<td>90</td>
<td>Phaser & Spring Verb</td>
</tr>
<tr>
<td>91</td>
<td>Stereo Compressor</td>
</tr>
<tr>
<td>92</td>
<td>Stereo Limiter</td>
</tr>
<tr>
<td>93</td>
<td>Stereo Gate / Expander</td>
</tr>
<tr>
<td>94</td>
<td>Stereo EQ-Loudness</td>
</tr>
<tr>
<td>95</td>
<td>Stereo EQ - Low Boost</td>
</tr>
<tr>
<td>96</td>
<td>Stereo EQ HighBoost</td>
</tr>
<tr>
<td>97</td>
<td>Stereo Phaser</td>
</tr>
<tr>
<td>98</td>
<td>Stereo Real Hall</td>
</tr>
<tr>
<td>99</td>
<td>Stereo Real Room</td>
</tr>
<tr>
<td>100</td>
<td>Stereo Hall</td>
</tr>
</tbody>
</table>